Abstract
Density-based clustering has the ability to detect arbitrary shaped clusters in any dataset. In recent years, several density peak clustering methods have been reported. Among these, a few need user input(s), but majority use cluster validity indices to provide the best results. In this paper, we propose a density-based user-input-free clustering method named UIFDBC, which is capable of detecting clusters of arbitrary shapes, without depending on any specific cluster validity index. The method is evaluated on 16 synthetic and 7 real-world datasets and compared with 8 recent density-based clustering methods. The results show our method is superior, in general, to its counterparts in terms of discovering arbitrary shaped clusters on tested datasets. The approach also has the ability to handle low-density instances in a special manner to minimize error propagation. Our method is available as an R package and can be downloaded by clicking the link https://sites.google.com/view/hussinchowdhury/software.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.