Abstract

Ultraviolet (UV) radiation induces mutagenicity and cytotoxicity in human cells by the formation of DNA lesions, including cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs), mainly on thymine-thymine (TpT) dinucleotides. Here, we firstly synthesized the two TpT dimeric lesions with satisfactory yields using a unique UV-irradiated water droplet approach followed by HPLC purification. By the use of purified TpT lesions as standards, we further developed and optimized a quantitative UHPLC-Q-TOF/MS method for the detection of CPDs and 6-4PPs. After the optimization of the enzyme composition and the pH values of hydrolysis solution, a combination of snake venom phosphodiesterase, nuclease P1, and calf intestine alkaline phosphatase can be used for one-step enzymatic digestion to efficiently release the dimeric lesions (CPDs and 6-4PPs) from the genomic DNA. By the use of the one-step digestion and UHPLC-Q-TOF/MS assay for scanning all dimeric lesions, we demonstrate that only are TpT dimeric lesions detectable in genomic DNA of HCT116 cells upon UVC irradiation. The estimated frequency of the CPD of TpT increases from 28.7 to 409 per 106 bases with increasing UVC dosage from 40 J/m2 to 1200 J/m2, while the 6-4PP of TpT increases from 3.7 to 54 per 106 bases. The proposed UHPLC-Q-TOF/MS method is promising for accurate identification and quantitative detection of UV-induced dimeric lesions in cellular DNA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call