Abstract
This paper presents a numerical study on the nonlinear behaviors of UHPC-filled square steel tubular (UHPCFST) columns under complex actions. A novel fiber model was developed considering the local buckling effects of steel tubes. The reliability and robustness of the model were validated by a large amount of experimental data in the reported literature. Then, the current design codes were evaluated and discussed on the basis of the collected experimental data, and a practical calculation method was finally proposed to predict the bending moment capacities of UHPCFST beam–columns. The results indicate that the proposed fiber model can accurately predict the nonlinear behaviors of UHPCFST beam–columns, including axial compression, eccentric compression, pure bending, and hysteretic behaviors. Compared with current design codes, the practical calculation method presents high precision and can accurately predict the bending moment capacities of UHPCFST beam–columns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.