Abstract

The UH-60A Airloads Workshop was a unique collaboration of aeromechanics experts from the U.S. Government, industry, and academia to address technical issues that hindered accurate rotor loads predictions. The Airloads Workshop leveraged the NASA/Army UH-60A Airloads flight test and NFAC wind tunnel test data. It functioned continuously for 17 years, from 2001 to 2018, and brought about one of the most important advancements in rotorcraft aeromechanics prediction capabilities by successfully demonstrating high-fidelity coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) analyses for both steady and maneuvering flight. The article is divided into two parts. Part I surveys the background of rotorcraft CFD/CSD development difficulties, the origins of the Airloads Workshop, and the rapid success achieved during the first phase that consisted of eight Workshops. Part II describes ongoing development during the subsequent two phases of the Airloads Workshop, the Ninth through the 13th, and the 14th through the 31st Workshops; the impact of the Airloads Workshop; and the lessons learned. Part I surveys the technical activities that led to a breakthrough for CFD/CSD coupling to successfully predict rotor blade airloads in trimmed steady-level flight conditions. This success illustrated the importance of collaboration among key experts with diverse backgrounds focused on a common objective to advance rotorcraft prediction methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.