Abstract
AbstractSubarachnoid haemorrhage (SAH), mostly caused by the rupture of intracranial aneurysm, is a common disease with a high fatality rate. SAH lesions are generally diffusely distributed, showing a variety of scales with irregular edges. The complex characteristics of lesions make SAH segmentation a challenging task. To cope with these difficulties, a u‐shaped deformable transformer (UDT) is proposed for SAH segmentation. Specifically, first, a multi‐scale deformable attention (MSDA) module is exploited to model the diffuseness and scale‐variant characteristics of SAH lesions, where the MSDA module can fuse features in different scales and adjust the attention field of each element dynamically to generate discriminative multi‐scale features. Second, the cross deformable attention‐based skip connection (CDASC) module is designed to model the irregular edge characteristic of SAH lesions, where the CDASC module can utilise the spatial details from encoder features to refine the spatial information of decoder features. Third, the MSDA and CDASC modules are embedded into the backbone Res‐UNet to construct the proposed UDT. Extensive experiments are conducted on the self‐built SAH‐CT dataset and two public medical datasets (GlaS and MoNuSeg). Experimental results show that the presented UDT achieves the state‐of‐the‐art performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.