Abstract

In this paper, we study the problem of multi-resource fairness in systems with multiple users. Each user requires to run one or more complex jobs that consist of multiple interconnected tasks. A job is considered finished when all its corresponding tasks have been executed in the system. Tasks can have different resource requirements. Because of special demands on particular hardware or software, tasks can have placement constraints limiting the type of machines they can run on. We develop User-Dependence Dominant Resource Fairness (UDRF), a generalized version of max-min fairness that combines graph theory and the notion of dominant resource shares to ensure multi- resource fairness between users with complex jobs. UDRF satisfies several desirable properties including strategy proofness, which ensures that users do not benefit from misreporting their true resource demands. We propose an offline algorithm that computes optimal UDRF allocation while the scheduling process can be to be decentralize across multiple schedulers. But optimality comes at a cost, especially for systems where schedulers need to make thousands of online scheduling decisions per second. Therefore, we develop a lightweight online algorithm that closely approximates UDRF. Large-scale simulations driven by Google cluster- usage traces show that UDRF achieves better resource utilization and throughput compared to the current state-of-the-art in multi-resource fair allocation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.