Abstract

UDP-glucose pyrophosphorylase (UGPase) is a key enzyme for polysaccharide synthesis, and its role in plants and bacteria is well established; however, its functions in unicellular microalgae remain ill-defined. Here, we perform bioinformatics, subcellular localization as well as in vitro and in vivo analyses to elucidate the functions of two UGPs (UGP1 and UGP2) in the model microalga Phaeodactylum tricornutum. Despite differences in amino acid sequence, substrate specificity, and subcellular localization between UGP1 and UGP2, both enzymes can efficiently increase the production of chrysolaminarin (Chrl) or lipids by regulating carbon flux distribution without impairing growth and photosynthesis in transgenic strains. Productivity evaluation indicate that UGP1 play a bigger role in regulating Chrl and lipid production than UGP2. In addition, UGP1 enhance antioxidant capacity, whereas UGP2 is involved in sulfoquinovosyldiacylglycerol (SQDG) synthesis in P. tricornutum. Taken together, the present results suggest that ideal microalgal strains can be developed for the industrial production of Chrl or lipids and lay the foundation for the development of methods to improve oxidative stress tolerance in diatoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.