Abstract
The DC–DC power converter plays an important role in solar systems to provide the stable DC bus voltage, but which is easily subject to various uncertainties and disturbances in practical operation. In this paper, an uncertainty and disturbance estimator (UDE) based sliding mode control approach is applied to improve the performance of power converters. The UDE is designed for the estimation of both the matched and mismatched uncertainties. To address the mismatched uncertainties, an adaptive sliding mode function is constructed with the compensation of the estimated uncertainties, which renders a chattering-free robust control law. Simulation and experimental results illustrate that the proposed control scheme achieves good dynamic performance, strong robustness and chattering reduction in the presence of uncertainties and disturbances
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.