Abstract
Underwater image enhancement algorithms improve image quality and indirectly enhance underwater visibility. Although many underwater image enhancement neural networks have been proposed, they require large amounts of data. To reduce the amount of data required while providing better image enhancement, this study proposes an underwater image colour transfer generative adversarial network (UCT-GAN). The authors first design a non-linear mapping function to generate colour cast images according to original images. Then, the authors utilise these image pairs (i.e. colour cast images and corresponding original images) to guide the UCT-GAN in learning the inverse function of the designed non-linear mapping function. Finally, colour cast images are restored via the inverse function. A data augmentation method based on Poisson fusion and block combination is also proposed to overcome the problem of requiring a large amount of training data. Moreover, the authors extend UCT-GAN into a multi-class colour transfer network to achieve an array of underwater image enhancements. Experimental results indicate that the proposed UCT-GAN can more effectively resolve underwater image colour cast compared to existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.