Abstract
State-of-the-art microscopy techniques enable the imaging of sub-diffraction barrier biological structures at the price of high costs or a lack of transparency. We try to reduce some of these barriers by presenting a super-resolution upgrade to our recently presented open-source optical toolbox UC2. Our new injection moulded parts allow larger builds with higher precision. The 4× lower manufacturing tolerance compared to three-dimensional printing makes assemblies more reproducible. By adding consumer-grade available open-source hardware such as digital mirror devices and laser projectors, we demonstrate a compact three-dimensional multimodal setup that combines image scanning microscopy and structured illumination microscopy. We demonstrate a gain in resolution and optical sectioning using the two different modes compared to the widefield limit by imaging Alexa Fluor ® 647- and Silicon Rhodamine-stained HeLa cells. We compare different objective lenses and by sharing the designs and manuals of our setup, we make super-resolution imaging available to everyone. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 2)'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.