Abstract
ObjectiveUCP2 is involved in the maintenance of mitochondrial function, immune response and regulation of oxidative stress under physiological or pathological conditions. The aim of this study was to investigate the effects of UCP2 on mitochondrial dysfunction, inflammation, and oxidative stress in septic acute kidney injury (AKI). MethodsWe established LPS-induced AKI model in mice and HK-2 cells. In vivo, the UCP2 inhibitor genipin was used to downregulate UCP2 in mouse kidneys. In vitro, UCP2 overexpression or knockdown was achieved by LV5-UCP2 or si-UCP2 transfection, respectively, to characterize the mechanisms of UCP2 in septic AKI. Indicators of renal injury, cell apoptosis, inflammation, oxidative stress, and mitochondrial dysfunction were assessed. ResultsCompared to the control group, LPS treatment increased UCP2 expression in vitro and in vivo. In vitro, UCP2 overexpression protected HK-2 cells from LPS-induced injury by suppression of apoptosis, inflammation, oxidative stress, MMP loss and ROS production, increase of ATP production and mtDNA content, and amelioration of damage to the mitochondrial ultrastructure. Additionally, inhibition of UCP2 expression by si-UCP2 resulted in decreased HK-2 cell resistance to LPS toxicity, as shown by increased apoptosis, inflammation, mitochondrial dysfunction and oxidative stress. In vivo, UCP2 downregulation aggravated the LPS-induced renal injury, inflammation, macrophages infiltration, mitochondrial dysfunction, and oxidative stress. ConclusionUCP2 may protect LPS-induced AKI by ameliorating mitochondrial dysfunction, anti-inflammation, and antioxidative activities, ultimately inhibiting tubule epithelial cell apoptosis, and that increasing the UCP2 content in mitochondria constitutes a new therapeutic approach for septic AKI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.