Abstract

We have previously reported that UCN-01 (7-hydroxystaurosporine), a protein kinase inhibitor that is under clinical trials as an anti-cancer agent in the USA and Japan, enhanced the anti-tumor activity of mitomycin C (MMC) in vitro and in vivo. Subsequent studies from other laboratories revealed that UCN-01 could selectively enhance cytotoxicity of DNA damaging agents in p53 defective cells and that this was mediated by abrogation of S and /or G(2) arrest by UCN-01. In this study, we report that UCN-01 selectively enhances the cytotoxicity of MMC in human p53 mutant cell lines. In contrast, UCN-01 showed little, if any, effect on MMC cytotoxicity in human p53 wild-type cell lines. Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-nick end-labeling (TUNEL) assay revealed that the combination of MMC with UCN-01 increased DNA breaks consistent with apoptosis in p53 defective A431 epidermoid carcinoma cells. In p53 wild-type MCF-7 breast carcinoma cells, the cyclin-dependent kinase inhibitor protein p21/WAF1 was markedly induced after the treatment with MMC alone, although this response was significantly delayed from the time of MMC treatment. Detailed cell-cycle studies revealed that UCN-01 abrogated S and G(2) phase accumulation induced by MMC in p53 defective cells and to a lesser extent in p53 wild-type cell lines. The abrogation of arrest in p53 wild-type cells was observed prior to significant induction of the p53 response. Since MMC was less effective against p53 defective cell lines than against p53 wild-type cell lines and UCN-01 selectively enhanced MMC cytotoxicity in p53 defective cell lines, UCN-01 may provide a new modality of MMC-based cancer chemotherapy, particularly in p53 defective cancer patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call