Abstract

PurposeThin cracks on the surface, such as those found in nuclear power plant concrete structures, are difficult to identify because they tend to be thin. This paper aims to design a novel segmentation network, called U-shaped contextual aggregation network (UCAN), for better recognition of weak cracks.Design/methodology/approachUCAN uses dilated convolutional layers with exponentially changing dilation rates to extract additional contextual features of thin cracks while preserving resolution. Furthermore, this paper has developed a topology-based loss function, called ℓcl Dice, which enhances the crack segmentation’s connectivity.FindingsThis paper generated five data sets with varying crack widths to evaluate the performance of multiple algorithms. The results show that the UCAN network proposed in this study achieves the highest F1-Score on thinner cracks. Additionally, training the UCAN network with the ℓcl Dice improves the F1-Scores compared to using the cross-entropy function alone. These findings demonstrate the effectiveness of the UCAN network and the value of incorporating the ℓcl Dice in crack segmentation tasks.Originality/valueIn this paper, an exponentially dilated convolutional layer is constructed to replace the commonly used pooling layer to improve the model receptive field. To address the challenge of preserving fracture connectivity segmentation, this paper introduces ℓcl Dice. This design enables UCAN to extract more contextual features while maintaining resolution, thus improving the crack segmentation performance. The proposed method is evaluated using extensive experiments where the results demonstrate the effectiveness of the algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.