Abstract

In this study, an appearance reconstruction method based on extraction of material reflectance properties of a three-dimensional (3D) object from its two-dimensional (2D) images is explained. One of the main advantages of this system is that the reconstructed object can be rendered in real-time with photorealistic quality in varying illumination conditions. The reflectance of the object is decomposed into diffuse and specular components. White the diffuse component is stored in a global texture, the specular component is represented with a bi-directional reflectance distribution function (BRDF). While estimating the diffuse components, illumination-invariant images of the object are computed from the input images, and a global texture of the object is extracted from these images by using surface particles. The specular reflectance data are collected from the residual images obtained by taking the difference between the input images and corresponding illumination-invariant images, and a BRDF model is fitted to these data. At the rendering phase, the diffuse and specular components are blended into each other to achieve a photorealistic appearance of the reconstructed object.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.