Abstract

The Loschmidt amplitude of the purified states of mixed-state density matrices is shown to have zeros when the system undergoes a quasistatic, quench, or Uhlmann process. While the Loschmidt-amplitude zero of a quench process corresponds to a dynamical quantum phase transition (DQPT) accompanied by the diverging dynamical free energy, the Loschmidt-amplitude zero of the Uhlmann process corresponds to a topological phase transition (TQPT) accompanied by a jump of the Uhlmann phase. Although the density matrix remains intact in a quasistatic process, the Loschmidt amplitude can have zeros not associated with a phase transition. We present examples of two-level and three-level systems exhibiting finite- or infinite- temperature DQPTs and finite-temperature TQPTs associated with the Loschmidt-amplitude zeros. Moreover, the dynamical phase or geometrical phase of mixed states can be extracted from the Loschmidt amplitude. Those phases may become quantized or exhibit discontinuity at the Loschmidt-amplitude zeros. A spinor representation of the purified states of a general two-level system is presented to offer more insights into the change of purification in different processes. The quasistatic process, for example, is shown to cause a rotation of the spinor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.