Abstract

Systematic advances in the resolution and analytical interpretation of acoustic emission (AE) spectroscopy have, over the last decade, allowed for extensions into novel fields. The same dynamic failure patterns, which have been identified in earthquakes, magnetism, and switching of ferroelastic and ferroelectric materials, are shown, in this paper, to be equally important in medicine, and minerals, in the geological context, to give just two examples. In the first application, we show that biological samples, i.e., kidney stones, can be analyzed with acoustic emission and related to the progression of mechanical avalanches. Discrepancies between strong and weak AE signals are shown to have separate avalanche exponents for a urate kidney stone, with evidence of slight multi-branching. It is proposed that investigations of this nature can be adopted to the field of medicine, and in the case of kidney stones, can provide a blueprint for selecting ideal combinations of energy and frequency to instigate their destruction. In a second example, porous geological material failure is shown to proceed equally in avalanches, and precursors to catastrophic failure can be detected via AE. Warning signs of impeding macroscopic collapse, e.g., in mining activities, show systematic evolution of energy exponents. Ultimately, this behavior is a result of geological processes, man-made bio-mineralization, or the burning of carbon inclusions, creating pores and holes, causing cracks, and accelerating their interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.