Abstract
The recent discovery of complete ammonia oxidation (comammox) process in a single organism challenged the division of labor between two functional groups in the classical two-step nitrification model. However, the distribution and activity of comammox bacteria in various environments remain largely unknown. This study presented a large-scale investigation of the geographical distribution, phylogenetic diversity, and activity of comammox Nitrospira in typical agricultural soils. Among the 23 samples harvested across China, comammox Nitrospira clade A was ubiquitously detected at 4.14 × 104–1.65 × 107amoA gene copies/g dry soil, with 90% belonging to the subclade A2. The abundance of comammox Nitrospira clade B was two orders of magnitude lower than clade A. In all samples, comammox Nitrospira were 1–2 orders of magnitude less abundant than canonical nitrifiers, and soils with slightly high pH and C/N tended to enrich more comammox Nitrospira. Unlike canonical nitrifiers, comammox Nitrospira had sustained amoA gene transcription regardless of external ammonia supply, indicating their competitive advantage over other nitrifiers under low-ammonia conditions. When fed with 1 mM ammonium for 15 days, comammox Nitrospira in tested soils were enriched 2.36 times higher than those enriched by the same amount of nitrite, indicating their preference to utilizing ammonia as the substrate. DNA-SIP further confirmed the in situ nitrification activity of comammox Nitrospira. This study provided new insights into the broad distribution and diversity of comammox Nitrospira in agricultural soils, which could potentially play an important role in the microbial nitrogen cycle in soils.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.