Abstract

A versatile two-step wet process to fabricate Pt, Pd, Rh, and Ru nanoparticle films (simplified as nanofilms hereafter) for in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study of electrochemical interfaces is presented, which incorporates an initial chemical deposition of a gold nanofilm on the basal plane of a silicon prism with the subsequent electrodepostion of desired platinum group metal overlayers. Galvanostatic electrodeposition of Pt, Rh, and Pd from phosphate or perchloric acid electrolytes, or potentiostatic electrodeposition of Ru from a sulfuric acid electrolyte, yields sufficiently "pinhole-free" overlayers as evidenced by electrochemical and spectroscopic characterizations. The Pt group metal nanofilms thus obtained exhibit strongly enhanced IR absorption. In contrast to the corresponding metal films electrochemically deposited directly on glassy carbon and bulk metal electrodes, the observed enhanced absorption for the probe molecule CO exhibits normal unipolar band shapes. Scanning tunneling microscopic (STM) images reveal that fine nanoparticles of Pt group metals are deposited around wavy and stepped bunches of Au nanoparticles of relatively large sizes. This ubiquitous strategy is expected to open a wide avenue for extending ATR surface-enhanced IR absorption spectroscopy to explore molecular adsorption and reactions on technologically important transition metals, as exemplified by successful real-time spectroscopic and electrochemical monitoring of the oxidation of CO at Pd and that of methanol at Pt nanofilm electrodes. The spectral features of free water molecules coadsorbed with CO on Pt, Pd, Rh, and Ru are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.