Abstract

Francisella tularensis is a Gram-negative bacterium whose ability to replicate within macrophages and cause disease is strictly dependent upon the coordinate activities of three transcription regulators called MglA, SspA, and PigR. MglA and SspA form a complex that associates with RNA polymerase (RNAP), whereas PigR is a putative DNA-binding protein that functions by contacting the MglA-SspA complex. Most transcription activators that bind the DNA are thought to occupy only those promoters whose activities they regulate. Here we show using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-Seq) that PigR, MglA, and SspA are found at virtually all promoters in F. tularensis and not just those of regulated genes. Furthermore, we find that the ability of PigR to associate with promoters is dependent upon the presence of MglA, suggesting that interaction with the RNAP-associated MglA-SspA complex is what directs PigR to promoters in F. tularensis. Finally, we present evidence that the ability of PigR (and thus MglA and SspA) to positively control the expression of genes is dictated by a specific 7 base pair sequence element that is present in the promoters of regulated genes. The three principal regulators of virulence gene expression in F. tularensis therefore function in a non-classical manner with PigR interacting with the RNAP-associated MglA-SspA complex at the majority of promoters but only activating transcription from those that contain a specific sequence element. Our findings reveal how transcription factors can exert regulatory effects at a restricted set of promoters despite being associated with most or all. This distinction between occupancy and regulatory effect uncovered by our data may be relevant to the study of RNAP-associated transcription regulators in other pathogenic bacteria.

Highlights

  • Francisella tularensis is a Gram-negative bacterium and the aetiological agent of tularemia, a disease that can be fatal in humans [1]

  • Prominent amongst those genes that are essential for the intramacrophage growth and survival of F. tularensis are those located on the Francisella pathogenicity island (FPI), which are thought to have been acquired through horizontal transfer [6,7,8]

  • The findings that MglA, stringent starvation protein A (SspA), and PigR are essential for intramacrophage growth and for virulence underscores the indispensible roles these regulators play in the coordinate control of virulence gene expression in F. tularensis [16,17,20]

Read more

Summary

Introduction

Francisella tularensis is a Gram-negative bacterium and the aetiological agent of tularemia, a disease that can be fatal in humans [1]. The ability of F. tularensis to cause disease is dependent principally upon its ability to grow within macrophages [1,3,4,5] Prominent amongst those genes that are essential for the intramacrophage growth and survival of F. tularensis are those located on the Francisella pathogenicity island (FPI), which are thought to have been acquired through horizontal transfer [6,7,8]. The findings that MglA, SspA, and PigR are essential for intramacrophage growth and for virulence underscores the indispensible roles these regulators play in the coordinate control of virulence gene expression in F. tularensis [16,17,20]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.