Abstract

The origin(s) of the ubiquity of probability distribution functions with power law tails is still a matter of fascination and investigation in many scientific fields from linguistic, social, economic, computer sciences to essentially all natural sciences. In parallel, self-excited dynamics is a prevalent characteristic of many systems, from the physics of shot noise and intermittent processes, to seismicity, financial and social systems. Motivated by activation processes of the Arrhenius form, we bring the two threads together by introducing a general class of nonlinear self-excited point processes with fast-accelerating intensities as a function of "tension." Solving the corresponding master equations, we find that a wide class of such nonlinear Hawkes processes have the probability distribution functions of their intensities described by a power law on the condition that (i)the intensity is a fast-accelerating function of tension, (ii)the distribution of marks is two sided with nonpositive mean, and (iii)it has fast-decaying tails. In particular, Zipf's scaling is obtained in the limit where the average mark is vanishing. This unearths a novel mechanism for power laws including Zipf's law, providing a new understanding of their ubiquity.

Highlights

  • Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

  • Self-excited dynamics is a prevalent characteristic of many systems, from the physics of shot noise and intermittent processes, to seismicity, financial and social systems

  • Motivated by activation processes of the Arrhenius form, we bring the two threads together by introducing a general class of nonlinear self-excited point processes with fast-accelerating intensities as a function of “tension.” Solving the corresponding master equations, we find that a wide class of such nonlinear Hawkes processes have the probability distribution functions of their intensities described by a power law on the condition that (i) the intensity is a fast-accelerating function of tension, (ii) the distribution of marks is two sided with nonpositive mean, and (iii) it has fast-decaying tails

Read more

Summary

Kiyoshi Kanazawa *

Faculty of Engineering, Information and Systems, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8573, Japan and JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan. We study a class of nonlinear Hawkes processes characterized by fast-accelerating intensities as a function of an auxiliary field called the “tension,” and report the first explicit solution that is applicable to a wide class of nonlinear Hawkes processes. We find that this class of nonlinear Hawkes family universally exhibits intensity distributions with power law tails.

Published by the American Physical Society
PðNtwin jλÞPSSðλÞdλ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call