Abstract

Seismic anisotropy provides key information to map the trajectories of mantle flow and understand the evolution of our planet. While the presence of anisotropy in the uppermost mantle is well established, the existence and nature of anisotropy in the transition zone and uppermost lower mantle are still debated. Here we use three-dimensional global seismic tomography images based on a large dataset that is sensitive to this region to show the ubiquitous presence of anisotropy in the lower mantle beneath subduction zones. Whereas above the 660 km seismic discontinuity slabs are associated with fast SV anomalies up to about 3%, in the lower mantle fast SH anomalies of about 2% persist near slabs down to about 1,000–1,200 km. These observations are consistent with 3D numerical models of deformation from subducting slabs and the associated lattice-preferred orientation of bridgmanite produced in the dislocation creep regime in areas subjected to high stresses. This study provides evidence that dislocation creep may be active in the Earth’s lower mantle, providing new constraints on the debated nature of deformation in this key, but inaccessible, component of the deep Earth. Lower-mantle anisotropy is present beneath all subduction zones, indicating that dislocation creep is active in the lower mantle, according to analysis of 3D global seismic tomography images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.