Abstract

We demonstrate a new approach to plasmonic enhanced photocatalytic water splitting by developing a novel core-shell Ti@TiO2 brush nanostructure where an elongated Ti nanorod forms a plasmonic core that concentrates light inside of a nanotubular anodic TiO2 shell. Following the ubiquitous element approach aimed at providing an enhanced device functionality without the usage of noble or rare earth elements, we utilized only inexpensive Ti to create a complex Ti@TiO2 nanostructure with an enhanced UV and Vis photocatalytic activity that emerges from the interplay between the surface plasmon resonance in the Ti core, Vis light absorption in the Ti-rich oxide layer at the Ti/TiO2 interface and UV light absorption in the nanotubular TiO2 shell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.