Abstract

In order to identify bacteria that assimilate dissolved inorganic carbon (DIC) in the northeast Pacific Ocean, stable isotope probing (SIP) experiments were conducted on water collected from 3 different sites off the Oregon and Washington coasts in May 2010, and one site off the Oregon Coast in September 2008 and March 2009. Samples were incubated in the dark with 2 mM 13C-NaHCO3, doubling the average concentration of DIC typically found in the ocean. Our results revealed a surprising diversity of marine bacteria actively assimilating DIC in the dark within the Pacific Northwest coastal waters, indicating that DIC fixation is relevant for the metabolism of different marine bacterial lineages, including putatively heterotrophic taxa. Furthermore, dark DIC-assimilating assemblages were widespread among diverse bacterial classes. Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes dominated the active DIC-assimilating communities across the samples. Actinobacteria, Betaproteobacteria, Deltaproteobacteria, Planctomycetes, and Verrucomicrobia were also implicated in DIC assimilation. Alteromonadales and Oceanospirillales contributed significantly to the DIC-assimilating Gammaproteobacteria within May 2010 clone libraries. 16S rRNA gene sequences related to the sulfur-oxidizing symbionts Arctic96BD-19 were observed in all active DIC assimilating clone libraries. Among the Alphaproteobacteria, clones related to the ubiquitous SAR11 clade were found actively assimilating DIC in all samples. Although not a dominant contributor to our active clone libraries, Betaproteobacteria, when identified, were predominantly comprised of Burkholderia. DIC-assimilating bacteria among Deltaproteobacteria included members of the SAR324 cluster. Our research suggests that DIC assimilation is ubiquitous among many bacterial groups in the coastal waters of the Pacific Northwest marine environment and may represent a significant metabolic process.

Highlights

  • Inorganic carbon assimilation in the euphotic zone is most often attributed to oxygenic photosynthesis

  • The distribution of Gammaproteobacteria in the two fractions dropped from 24% in the 12C band to only 14% of the active dissolved inorganic carbon (DIC)

  • DIC Assimilation- General Considerations Bacterial 16S rRNA gene sequence data from stable isotope probing (SIP) experiments conducted on water collected from the Oregon and Washington coasts demonstrate that Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes species are the bacterial classes most active in assimilating DIC into their DNA

Read more

Summary

Introduction

Inorganic carbon assimilation in the euphotic zone is most often attributed to oxygenic photosynthesis. Photosynthetic organisms fix DIC via the Calvin-Benson-Bassham (CBB) cycle, utilizing the CO2 fixing enzyme ribulose-1, 5-bisphosphate carboxylase oxygenase (RubisCO) [1]. Recent research has uncovered widespread bacterial DIC assimilation by mixotrophic organisms and alternative carbon fixation pathways [2], blurring the lines between strict autotrophic and heterotrophic behavior. Ubiquitous in the euphotic zone, strains of aerobic anoxygenic photosynthetic bacteria, members of the Roseobacter clade [3] have been shown to use a mixotrophic carbon metabolism [4,5,6]. Photoheterotrophic members of the Gammaproteobacteria group NOR5/OM60, such as strain HTCC2080, may even be capable of mixotrophy via the 2-hydroxypropionate cycle [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call