Abstract

Receptor-interacting serine/threonine kinase (RIPK) is associated with cellular inflammation and immune regulation. The current study explored the role of RIPK2 in osteomyelitis and the potential upstream targets of RIPK2. A Staphylococcus aureus-induced osteomyelitis mouse model was established using wild-type (WT) and ubiquitin-specific peptidase 8 (USP8)-deficient (USP-/-) mice, and the osteomyelitis-related symptoms were evaluated. Bone marrow-derived macrophages (BMDMs) were isolated from the WT and USP-/- mice. Enzyme-linked immunosorbent assays, quantitative polymerase chain reaction, and immunoblot analysis were used to determine the levels of target biomarkers, which were induced by lipopolysaccharide (LPS), CpG, or PAM3CSK4. USP8 promoted RIPK2-mediated NF-κB activation. USP8 is indispensable for RIPK2-mediated LPS-induced NF-κB activation in BMDMs. USP8 is required for the production of inflammatory cytokines induced by LPS, CpG, or PAM3CSK4 in BMDMs. In addition, USP-/- mice exhibited ameliorated symptoms, including less body weight and cortical bone loss, and reduced bacterial load and reactive bone formation in the S. aureus-induced osteomyelitis mouse model. USP8 is critical in the S. aureus-induced osteomyelitis mouse model by targeting RIPK2 ubiquitination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call