Abstract

Ubiquitin (UB) is a conserved protein that regulates a number of processes in eukaryotic cells. Nearly all lepidopteran baculoviruses encode UB homologs showing a partial sequence identity with human UB (Hu-UB). In this study, the sequence, predicted 3D-structure and subcellular localization of UB homologs encoded by two different nucleopolyhedroviruses of Bombyx mori (BmNPV) and Helicoverpa armigera (HaNPV) were compared. UBs of BmNPV and HaNPV (Bm-UB, Ha-UB, respectively) shared only 73% of sequence identity of the different aa in relation to Hu-UB being localized in non-conserved parts, namely in two heterogeneous regions of aa 15-32 and aa 53-60. Interestingly, Bm-UB and Ha-UB share the same seven lysines except for an additional Lys54 in Bm-UB. However, in spite of the sequence heterogeneity, Bm-UB and Ha-UB have a similar predicted 3D-structure. A difference in their subcellular localization during virus growth in insect cell lines was found in the late stage of formation of occlusion-derived virus (ODV). In particular Bm-UB was localized mainly and evenly in the nucleus, while Ha-UB on the nuclear membrane. These data suggest that (i) UBs, besides being engaged in various cellular processes, have a role in specific processes of virus growth, and (ii) Bm-UB and Ha-UB may show certain different activities associated with the virus growth.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call