Abstract

Gamma-secretase catalyzes intramembraneous proteolysis of several type I transmembrane proteins, including beta-amyloid precursor protein (APP), to generate amyloid beta protein (Abeta), a key player in the pathogenesis of Alzheimer's disease (AD). The critical components of the gamma-secretase complex include presenilin (PS), nicastrin (NCT), presenilin enhancer-2 (PEN-2) and anterior pharynx defective-1 (APH-1). Abnormalities of the ubiquitin-proteasome pathway have been implicated in the pathogenesis of AD; while PS and PEN-2 turnover is regulated by this pathway, it is unknown whether the ubiquitin-proteasome pathway is also involved in the degradation of APH-1 protein. In this study, we found that the expression of endogenous and exogenous APH-1 significantly increased in cells treated with proteasome-specific inhibitors. The effect of the proteasome inhibitors on APH-1 was dose- and time-dependent. APH-1 protein was ubiquitinated. Pulse-chase metabolic labeling experiments showed that the degradation of newly synthesized radiolabeled APH-1 proteins was inhibited by lactacystin. Disruption of the PS1 and PS2 genes did not affect the degradation of APH-1 by the ubiquitin-proteasome pathway. Furthermore, over-expression of APH-1 and inhibition of proteasomal APH-1 degradation facilitated gamma-secretase cleavage of APP to generate Abeta. These results demonstrate that the degradation of APH-1 protein is mediated by the ubiquitin-proteasome pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call