Abstract

T cells from patients with systemic lupus erythematosus (SLE) exhibit reduced expression of the critical T cell receptor (TCR)-associated CD3ζ signaling chain and are poor producers of the vital cytokine IL-2. By oligonucleotide pulldown and mass spectrometry discovery approaches, we identified the splicing regulator serine/arginine-rich splicing factor (SRSF) 1 or splicing factor 2/alternative splicing factor (SF2/ASF) to be important in the expression of CD3ζ chain. Importantly, increases in the expression of SRSF1 rescued IL-2 production in T cells from patients with SLE. In this study, we investigated the regulation of SRSF1 expression in resting and activated human T cells. We found that T cell stimulation induced a rapid and significant increase in mRNA expression of SRSF1; however, protein expression levels did not correlate with this increase. Co-engagement of CD28 induced a similar mRNA induction and reduction in protein levels. Proteasomal but not lysosomal degradation was involved in this down-regulation as evidenced by blocking with specific inhibitors MG132 and bafilomycin, respectively. Immunoprecipitation studies showed increased ubiquitination of SRSF1 in activated T cells. Interestingly, T cells from patients with SLE showed increased ubiquitination of SRSF1 when compared with those from healthy individuals. Our results demonstrate a novel mechanism of regulation of the splicing factor SRSF1 in human T cells and a potential molecular mechanism that controls its expression in SLE.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.