Abstract

BackgroundOur previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. In this study, we sought to detect whether ubiquitinated proteins enriched from tumor cells could be used directly as a novel cancer vaccine.MethodsThe ubiquitin binding protein Vx3(A7) was used to isolate ubiquitinated proteins from EL4 and B16-F10 tumor cells after blocking their proteasomal degradation pathway. C57BL/6 mice were vaccinated with different doses of Ub-enriched proteins via inguinal lymph nodes or subcutaneous injection and with DRibbles, Ub-depleted proteins and whole cell lysate as comparison groups, respectively. The lymphocytes from the vaccinated mice were re-stimulated with inactivated tumor cells and the levels of IFN-γ in the supernatant were detected by ELISA. Anti-tumor efficacy of Ub-enriched proteins vaccine was evaluated by monitoring tumor growth in established tumor mice models. Graphpad Prism 5.0 was used for all statistical analysis.ResultsWe found that after stimulation with inactivated tumor cells, the lymphocytes from the Ub-enriched proteins-vaccinated mice secreted high level of IFN-γ in dose dependent manner, in which the priming vaccination via inguinal lymph nodes injection induced higher IFN-γ level than that via subcutaneous injection. Moreover, the level of secreted IFN-γ in the Ub-enriched proteins group was markedly higher than that in the whole cell lysate and Ub-depleted proteins. Interestingly, the lymphocytes from mice vaccinated with Ub-enriched proteins, but not Ub-depleted proteins and whole cell lysates, isolated from EL4 or B16-F10 tumor cells also produced an obvious level of IFN-γ when stimulated alternately with inactivated B16-F10 or EL4 tumor cells. Furthermore, Ub-enriched proteins vaccine showed a significant inhibitory effect on in vivo growth of homologous tumor, as well as allogeneic tumor, compared with Ub-depleted proteins and tumor cell lysate. Tumor growth was regressed after three times of vaccination with Ub-enriched proteins in contrast to other groups.ConclusionThese results indicated that Ub-enriched proteins isolated from tumor cells may have a potential as a potent vaccine for immunotherapy against cancer.

Highlights

  • IntroductionOur previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: defective ribosomal products (DRiPs)-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells

  • Our previous studies have demonstrated that autophagosome-enriched vaccine induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells

  • It is well established that cross-presentation of tumor antigens derived from tumor cell as antigen-donor cell plays a pivotal role in the initiation and development of cytotoxic T lymphocytes (CD8+ CTL) immune response to tumorassociated antigens (TAAs), including self or mutated selfantigens derived from tumor cells [1,4]

Read more

Summary

Introduction

Our previous studies have demonstrated that autophagosome-enriched vaccine (named DRibbles: DRiPs-containing blebs) induce a potent anti-tumor efficacy in different murine tumor models, in which DRibble-containing ubiquitinated proteins are efficient tumor-specific antigen source for the cross-presentation after being loaded onto dendritic cells. It is well established that cross-presentation of tumor antigens derived from tumor cell as antigen-donor cell plays a pivotal role in the initiation and development of cytotoxic T lymphocytes (CD8+ CTL) immune response to tumorassociated antigens (TAAs), including self or mutated selfantigens derived from tumor cells [1,4]. It is generally believed that the proteasome-mediated protein degradation pathway plays an important role in providing peptides for MHC-I restricted antigen presentation in antigen-donor cells (direct presentation), while the long-lived protein but not shortlived proteins are normally cross-presented by host pAPCs. Under abnormal physiological conditions, i.e., when either pathway is defective, the degradation of proteins is shunted from one pathway to the other to protect cell survival [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call