Abstract

TANK-binding kinase 1 (TBK1) is essential for IFN regulatory factor 3 activation and IFN-β production downstream of various innate receptors. However, how TBK1 activation is terminated is not well defined. In this study, we identified ubiquitin-specific protease (USP) 2b as a new negative regulator for TBK1 activation. Overexpression of USP2b inhibited retinoic acid-inducible gene-I-mediated IFN-β signaling; in contrast, knockdown of USP2b expression by small interfering RNA enhanced retinoic acid-inducible gene-I-mediated IFN-β signaling. Coimmunoprecipitation experiments demonstrated that USP2b interacted with TBK1. As a deubiquitinating enzyme, USP2b was demonstrated to cleave K63-linked polyubiquitin chains from TBK1 to inhibit TBK1 kinase activity. Consistent with the inhibitory roles of USP2b on TBK1 activation, knockdown of USP2b significantly inhibited the replication of vesicular stomatitis virus, whereas overexpression of USP2b resulted in enhanced replication of vesicular stomatitis virus. Therefore, our findings demonstrated that USP2b deubiquitinates K63-linked polyubiquitin chains from TBK1 to terminate TBK1 activation and negatively regulate IFN-β signaling and antiviral immune response.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.