Abstract

The epithelial Na(+) channel (ENaC) is a critical component of the pathway maintaining salt and water balance. The channel is regulated by members of the Nedd4 family of ubiquitin-protein ligases, which bind to channel subunits and catalyze channel internalization and degradation. ENaC mutations that abolish this interaction cause Liddle's syndrome, a genetic form of hypertension. Here, we test the hypothesis that WW domain-containing protein 2 (WWP2), a member of the Nedd4 family of ubiquitin-protein ligases, is a candidate to regulate ENaC. Consistent with this hypothesis, we found that WWP2 is expressed in epithelial tissues that express ENaC, as well as in a wide variety of other tissues. WWP2 contains four WW domains, three of which bound differentially to ENaC subunits. In contrast, all four human Nedd4-2 WW domains bound to ENaC. WWP2 inhibited ENaC when coexpressed in epithelia, requiring a direct interaction between the proteins; mutation of the ENaC PY motifs abolished inhibition. Thus expression, binding, and functional data all suggest that WWP2 is a candidate to regulate ENaC-mediated Na(+) transport in epithelia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call