Abstract

Proteasomes are large multicatalytic proteinase complexes that are found in the cytosol and in the nucleus of eukaryotic cells with a central role in cellular protein turnover. The ubiquitin-proteasome system (UPS) has a central role in the selective degradation of intracellular proteins. Among the key proteins whose levels are modulated by the proteasome are those involved in the control of inflammatory processes, cell cycle regulation, and gene expression. There are now overwhelming data suggesting that the UPS contributes to cerebral ischemic injury. Proteasome inhibition is a potential treatment option for stroke. Thus far, proof of principle has been obtained from studies in several animal models of cerebral ischemia. Treatment with proteasome inhibitors reduces effectively neuronal and astrocytic degeneration, cortical infarct volume, infarct neutrophil infiltration, and NF-kappaB immunoreactivity with an extension of the neuroprotective effect at least 6 hours after ischemic insult. However, it is clear that the UPS represents a central pathway for the processing and metabolism of multiple proteins with critical roles in cellular function. To avoid eliciting significant side effects associated with complete inhibition of the proteasome and the possible immunosuppressive effects from persistent suppression of NF-kappaB activation, it is critical that we understand how to partially and temporally attenuate proteasome function to elicit the desired therapeutic effect before any large-scale use in humans. This review highlights the most recent advances in our knowledge on UPS, as well as the early experience of using proteasome inhibition strategies to treat acute stroke.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.