Abstract

Many plants have a self-incompatibility (SI) system in which the rejection of self-pollen is determined by multiple haplotypes at a single locus, termed S. In the Solanaceae, each haplotype encodes a single ribonuclease (S-RNase) and multiple S-locus F-box proteins (SLFs), which function as the pistil and pollen SI determinants, respectively. S-RNase is cytotoxic to self-pollen, whereas SLFs are thought to collaboratively recognize non-self S-RNases in cross-pollen and detoxify them via the ubiquitination pathway. However, the actual mechanism of detoxification remains unknown. Here we isolate the components of a SCF(SLF) (SCF=SKP1-CUL1-F-box-RBX1) from Petunia pollen. The SCF(SLF) polyubiquitinates a subset of non-self S-RNases in vitro. The polyubiquitinated S-RNases are degraded in the pollen extract, which is attenuated by a proteasome inhibitor. Our findings suggest that multiple SCF(SLF) complexes in cross-pollen polyubiquitinate non-self S-RNases, resulting in their degradation by the proteasome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.