Abstract

We studied the role of the ubiquitin-proteasome system in rat skeletal muscle during sepsis and subsequent recovery. Sepsis was induced with intraperitoneal zymosan injections. This model allows one to study a sustained and reversible catabolic phase and mimics the events that prevail in septic and subsequently recovering patients. In addition, the role of the ubiquitin-proteasome system during muscle recovery is poorly documented. There was a trend for increased ubiquitin-conjugate formation in the muscle wasting phase, which was abolished during the recovery phase. The trypsin- and chymotrypsin-like peptidase activities of the 20S proteasome peaked at day 6 following zymosan injection (i.e. when both muscle mass and muscle fiber cross-sectional area were reduced the most), but remained elevated when muscle mass and muscle fiber cross-sectional area were recovering (11 days). This clearly suggests a role for the ubiquitin-proteasome pathway in the muscle remodeling and/or recovery process. Protein levels of 19S complex and 20S proteasome subunits did not increase throughout the study, pointing to alternative mechanisms regulating proteasome activities. Overall these data support a role for ubiquitin-proteasome dependent proteolysis in the zymosan septic model, in both the catabolic and muscle recovery phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.