Abstract
Ubiquitin-mediated proteolysis plays a central role in controlling intracellular levels of essential regulatory molecules such as p53, cyclins, myc, BRCA1, HIF-1alpha, etc. The Kruppel-like factor 5 (KLF5) transcription factor regulates biological processes involved in carcinogenesis, angiogenesis, and smooth muscle cell differentiation. In carcinogenesis, KLF5's role has been indicated by frequent genetic deletion as well as functional studies. Here we show that KLF5 is an unstable protein with a short half-life. Destruction of KLF5 was prevented by each of the proteasome-specific inhibitors tested but not by an inhibitor for trypsin-like proteases and cysteine proteases or by a lysosome inhibitor in epithelial cells. Furthermore, KLF5 underwent ubiquitination, and deletion of a 56-amino-acid sequence adjacent to a known transactivation domain of KLF5 significantly reduced its ubiquitination and degradation. Interestingly, cancer cells appeared to be more active in KLF5 degradation than untransformed epithelial cells, yet their proteasome activity was not higher. These results suggest that KLF5 protein is degraded at least in part through ubiquitination-proteasome pathway, which may have become hyperactive for KLF5 in cancer cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.