Abstract

BackgroundViral infection activates innate immune pathways and interferons (IFNs) play a pivotal role in the outcome of a viral infection. Ubiquitin modifications of host and viral proteins significantly influence the progress of virus infection. Ubiquitin-conjugating enzyme E2s (UBE2) have the capacity to determine ubiquitin chain topology and emerge as key mediators of chain assembly.MethodsIn this study, we screened the functions of 34 E2 genes using an RNAi library during Dengue virus (DENV) infection. RNAi and gene overexpression approaches were used to study the gene function in viral infection and interferon signaling.ResultsWe found that silencing UBE2J1 significantly impaired DENV infection, while overexpression of UBE2J1 enhanced DENV infection. Further studies suggested that type I IFN expression was significantly increased in UBE2J1 silenced cells and decreased in UBE2J1 overexpressed cells. Reporter assay suggested that overexpression of UBE2J1 dramatically suppressed RIG-I directed IFNβ promoter activation. Finally, we have confirmed that UBE2J1 can facilitate the ubiquitination and degradation of transcription factor IFN regulatory factor 3 (IRF3).ConclusionThese results suggest that UBE2 family member UBE2J1 can negatively regulate type I IFN expression, thereby promote RNA virus infection.

Highlights

  • Viral infection activates innate immune pathways and interferons (IFNs) play a pivotal role in the outcome of a viral infection

  • Dengue virus (DENV) replication were significantly decreased in CDC34, UBE2B and UBE2J1 siRNA-treated cells, while increased in UBE2S, UBE2U, UBE2V1 and UBE2I siRNA-treated cells (t-test, p < 0.05 Vs NC) (Fig. 1a)

  • Since UBE2J1 silencing caused a most dramatic decrease on DENV replication, we focused on the role of UBE2J1 on DENV infection in this study

Read more

Summary

Introduction

Viral infection activates innate immune pathways and interferons (IFNs) play a pivotal role in the outcome of a viral infection. Ubiquitin modifications of host and viral proteins significantly influence the progress of virus infection. Interferons (IFNs) play a pivotal role in the outcome of a viral infection, and regulate both innate and adaptive. Ubiquitin modifications of proteins within the signaling cascades induce type I interferon expression, and in contrast, some viruses are found to utilize the ubiquitin system to suppress IFNs [6, 7]. K48-linked polyubiquitin chains ligated the CARD domain of RIG-I and MDA5, leading to proteasome-mediated degradation of both receptors and repressing IFN-I signaling [8].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call