Abstract

Dishvelled-2 (Dvl2) is an essential component of Wnt pathway, which controls several cell fate decisions during development, such as proliferation, survival and differentiation. Dvl2 forms higher-order protein assemblies in the cell that are critical for relaying the signal from upstream Wnt ligand-frizzled receptor binding to downstream effector β-catenin activation. However, the precise molecular nature and contribution of Dvl2 protein assemblies during Wnt signalling is unknown. Here, we show that Dvl2 forms protein condensates driven by liquid-liquid phase separation. An intrinsically disordered region (IDR) at the N-terminus is essential for Dvl2 phase separation. Importantly, we identified the HECT-E3 ligase WWP2 as an essential driver of Dvl2 phase separation in vitro and in cells. We demonstrated that ubiquitylation of Dvl2 through K63 linkage by WWP2 is required for formation of Dvl2 condensates. Phase-separated Dvl2 activates Wnt signaling by sequestering the components of destruction complex and thus relieving β-catenin. Together, our results reveal a ubiquitylation-dependent liquid-liquid phase separation as a new process through which Dvl2 forms condensates, which is necessary for transduction of Wnt signalling. This article has an associated First Person interview with the first author of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.