Abstract
Chip-multiprocessors (CMPs) must often execute workload mixes with different performance requirements. On one hand, user-facing, latency-critical applications (e.g., web search) need low tail (i.e., worst-case) latencies, often in the millisecond range, and have inherently low utilization. On the other hand, compute-intensive batch applications (e.g., MapReduce) only need high long-term average performance. In current CMPs, latency-critical and batch applications cannot run concurrently due to interference on shared resources. Unfortunately, prior work on quality of service (QoS) in CMPs has focused on guaranteeing average performance, not tail latency. In this work, we analyze several latency-critical workloads, and show that guaranteeing average performance is insufficient to maintain low tail latency, because microarchitectural resources with state, such as caches or cores, exert inertia on instantaneous workload performance. Last-level caches impart the highest inertia, as workloads take tens of milliseconds to warm them up. When left unmanaged, or when managed with conventional QoS frameworks, shared last-level caches degrade tail latency significantly. Instead, we propose Ubik, a dynamic partitioning technique that predicts and exploits the transient behavior of latency-critical workloads to maintain their tail latency while maximizing the cache space available to batch applications. Using extensive simulations, we show that, while conventional QoS frameworks degrade tail latency by up to 2.3x, Ubik simultaneously maintains the tail latency of latency-critical workloads and significantly improves the performance of batch applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.