Abstract
In search and rescue (SAR) missions every minute counts. Semi-collapsed buildings are among the difficult scenarios encountered by search and rescue teams. An UAV-based exploration system can provide crucial information on the accessibility of different sectors, hazards, and injured people. The research project “UAV-Rescue” aims to provide UAV-borne sensing and investigate the use of AI to support this powerful tool. The sensor suite contains a radar sensor for detecting people based on breath and pulse movement. A neural network interprets the extracted data to identify signs of human life and as such persons that need rescuing. We also fuse radar and lidar data to explore the environment of the UAV and obtain a robust basis for simultaneous localization and mapping even under restricted visibility conditions. Additionally, we plan to use AI to support the path planning of the drone taking the digital map as input. Furthermore, AI is leveraged to map intact and damaged building structures. Potentially hazardous gases common to urban settings are tracked. We fuse the acquired information into a model of the explored area with marked locations of potential hazards and people to be rescued. The project also addresses ethical and societal issues raised by the use of UAVs close to people as well as AI supported decision making. The talk will present the system concept including interfaces and sensor fusion approaches. We will show first results of a research project from static and dynamic measurement campaigns demonstrating the capability of radar and lidar based sensing in a complex urban environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.