Abstract

Communication reliability is one of the most important factors in ensuring the safe operation of unmanned aerial vehicles (UAVs). The reliability of wireless communication for a UAV swarm is typically characterized by the signal-to-interference-and-noise ratio (SINR). However, previous work on UAV swarm communication reliability did not use a comprehensive SINR model. In this paper, we derived two novel closed-form approximations – lognormal and generalized beta prime (GBP) - of UAV swarm communication reliability based on a comprehensive SINR model. The model includes shadowing, multipath fading, the dependence of fading on external factors, which are the probability of line-of-sight (LoS) and the physical environment, as well as all possible interference within the system, which may be from the UAVs and the ground control station (GCS). For typical swarm heights between 60 – 300 m and up to 32 UAVs, comparisons of the approximate and simulated reliabilities for UAV swarms with a radius up to a critical value (which increases with the number and transmit power of the UAVs) show that only the lognormal approximation is accurate for all uplink and downlink communications, up to a critical horizontal distance from the GCS (which increases with height). Benchmarking of the lognormal approximation shows that neglecting either shadowing or multipath fading leads to high approximation errors. An example of how the lognormal approximation can be used to evaluate and maintain the communication reliability of a UAV swarm during deployment is given. Furthermore, it can be used to derive other SINR-dependent performance metrics, such as ergodic capacity and symbol error rate, which are useful in UAV network design and monitoring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.