Abstract
In order to solve the problems of large amounts of calculation and long calculation times of the A-star algorithm in three-dimensional space, based on the R5DOS model, this paper proposes a three-dimensional space UAV path planning model. The improved R5DOS intersection model is combined with the improved A-star algorithm. Together, they construct a local search process, and the R5DOS path planning model is established by reducing the number of search nodes. The path planning model is simulated through MATLAB software and the model can greatly reduce the number of nodes and computational complexity of the A-star algorithm in three-dimensional spaces, while also reducing the calculation time of the UAV. Finally, we compare the improved A-star algorithm with the original A-star algorithm and the geometric A-star algorithm. The final fitting result proves that the improved A-star algorithm has a shorter computation time and fewer node visits. Overall, the simulation results confirm the effectiveness of the improved A-star algorithm and they can be used as a reference for future research on path planning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.