Abstract

This article presents an optimal guidance approach for unmanned aerial vehicle navigation between two given points in 3D considering the wind influence. The proposed cost function to be minimized involves the weighting of the travel time and the control energy. An analytical expression is derived for the optimal cost yielding a fourth-order polynomial, whose positive real roots correspond to the optimal travel times. The optimization problem is shown to be equivalent to the zero-effort-miss/zero-effort-velocity optimal guidance approach for the case of a constant wind acceleration. Case studies for rendezvous and intercept problems are shown through simulation examples for different wind conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.