Abstract

An Unmanned Aerial Vehicle (UAV) is an aircraft without onboard human pilot, which motion can be remotely and / or autonomously controlled. Using multiple UAVs, i.e. a fleet, offers various advantages compared to the single UAV scenario, such as longer mission duration, bigger mission area or the load balancing of the mission payload. For collaboration purposes, it is assumed that the UAVs are equipped with ad hoc communication capabilities and thus form a special case of mobile ad hoc networks. However, the coordination of one or more fleets of UAVs, in order to fulfill collaborative missions, raises multiples issues in particular when UAVs are required to act in an autonomous fashion. Thus, we propose a decentralised and localised algorithm to control the mobility of the UAVs. This algorithm is designed to perform surveillance missions with network connectivity constraints, which are required in most practical use cases for security purposes as any UAV should be able to be contacted at any moment in case of an emergency. The connectivity is maintained via a tree-based overlay network, which root is the base station of the mission, and created by predicting the future positions of one-hop neighbours. This algorithm is compared to the state of the art contributions by introducing new quality metrics to quantify different aspect of the area coverage process (speed, exhaustivity and fairness). Numerical results obtained via simulations show that the maintenance of the connectivity has a slight negative impact on the coverage performances while the connectivity performances are significantly better.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.