Abstract

Energy-limited devices and connectivity in complicated environments are two main challenges for Internet of Things (IoT)-enabled mobile networks, especially when IoT devices are distributed in a disaster area. Unmanned aerial vehicle (UAV)-enabled simultaneous wireless information and power transfer (SWIPT) is emerging as a promising technique to tackle the above problems. In this article, we establish an emergency communications framework of UAV-enabled SWIPT for IoT networks, where the disaster scenarios are classified into three cases, namely, dense areas, wide areas and emergency areas. First, to realize wireless power transfer for IoT devices in dense areas, a UAV-enabled wireless power transfer system is considered where a UAV acts as a wireless charger and delivers energy to a set of energy receivers. Then, a joint trajectory planning and resource scheduling scheme for a multi-UAVs system is discussed to provide wireless services for IoT devices in wide areas. Furthermore, an intelligent prediction mechanism is designed to predict service requirements (i.e., data transmission and battery charging) of the devices in emergency areas, and accordingly, a dynamic path planning scheme is established to improve the energy efficiency (EE) of the system. Simulation results demonstrate the effectiveness of the above schemes. Finally, potential research directions and challenges are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.