Abstract

Smoke plumes emitted from wildland-urban interface (WUI) wildfires contain toxic chemical substances that are harmful to human health, mainly due to the burning of synthetic components. Accurate measurement of these air toxics is necessary for understanding their impacts on human health. However, air pollution is typically measured using ground-based sensors, manned airplanes, or satellites, which all provide low-resolution data. Unmanned Aerial Vehicles (UAVs) have the potential to provide high-resolution spatial and temporal data due to their ability to hover in specific locations and maneuver with precise trajectories in 3-D space. This study investigates the use of an octocopter UAV, equipped with a customized air quality sensor package and a volatile organic compound (VOC) air sampler, for the purposes of collecting and analyzing air toxics data from wildfire plumes. The UAV prototype developed has been successfully tested during several prescribed fires conducted by the California Department of Forestry and Fire Protection (CAL FIRE). Data from these experiments were analyzed with emphasis on the relationship between the air toxics measured and the different types of vegetation/fuel burnt. BTEX compounds were found to be more abundant for hardwood burning compared to grassland burning, as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.