Abstract

Free space optical (FSO) communication has recently aroused great interest in academia due to its unique features, such as large transmission band, high data rates, and strong anti-electromagnetic interference. With the aim of evaluating the performance of an FSO communication system and extending the line-of-sight transmission distance, we propose an unmanned aerial vehicle (UAV)-assisted dual-hop FSO communication system equipped with amplify-and-forward protocol at the relay node. Specifically, we consider impairments of atmospheric absorption, pointing errors, atmospheric turbulence, and link interruptions due to angle-of-arrival fluctuations in the relay system. The Gamma-Gamma and Malaga distributions are used to model the influence of atmospheric turbulence on the source-to-UAV and UAV-to-destination links, respectively. We derive closed-form expressions of the probability density function (PDF) and cumulative distribution function (CDF) for the proposed communication system, in terms of the Meijer-G function. Based on the precise PDF and CDF, analytical expressions for the outage probability, average bit error rate, and ergodic capacity are proposed with the aid of the extended generalized bivariate Fox's H function. Finally, we show that there is a match between the analytical results and numerical results, and we analyze the influence of the system and channel parameters on the performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.