Abstract
High spatial and temporal resolution data is crucial to comprehend the dynamics of water quality fully, support informed decision-making, and allow efficient management and protection of water resources. Traditional in situ water quality measurement techniques are both time-consuming and labor-intensive, resulting in databases with limited spatial and temporal frequency. To address these challenges, satellite-driven water quality assessment has emerged as an efficient and effective solution, offering comprehensive data on larger-scale water bodies. Numerous studies have utilized multispectral and hyperspectral remote sensing data from various sensors to assess water quality, yielding promising results. However, the recent popularity of unmanned aerial vehicle (UAV) remote sensing can be attributed to its high spatial and temporal resolution, flexibility, ability to capture data at different times of day, and relatively low cost compared to traditional platforms. This study presents a comprehensive review of the current state of the art in monitoring water quality in small inland water bodies using satellite and UAV remote sensing data. It encompasses an overview of atmospheric correction algorithms and the assessment of different water quality parameters. Furthermore, the review addresses the challenges associated with monitoring water quality in these bodies of water and emphasizes the potential of UAVs to overcome these challenges by providing accurate and reliable data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.