Abstract

With the aim of improving the image quality of the crucial components of transmission lines taken by unmanned aerial vehicles (UAV), a priori work on the defective fault location of high-voltage transmission lines has attracted great attention from researchers in the UAV field. In recent years, generative adversarial nets (GAN) have achieved good results in image generation tasks. However, the generation of high-resolution images with rich semantic details from complex backgrounds is still challenging. Therefore, we propose a novel GANs-based image generation model to be used for the critical components of power lines. However, to solve the problems related to image backgrounds in public data sets, considering that the image background of the common data set CPLID (Chinese Power Line Insulator Dataset) is simple. However, it cannot fully reflect the complex environments of transmission line images; therefore, we established an image data set named “KCIGD” (The Key Component Image Generation Dataset), which can be used for model training. CFM-GAN (GAN networks based on coarse–fine-grained generators and multiscale discriminators) can generate the images of the critical components of transmission lines with rich semantic details and high resolutions. CFM-GAN can provide high-quality image inputs for transmission line fault detection and line inspection models to guarantee the safe operation of power systems. Additionally, we can use these high-quality images to expand the data set. In addition, CFM-GAN consists of two generators and multiple discriminators, which can be flexibly applied to image generation tasks in other scenarios. We introduce a penalty mechanism-related Monte Carlo search (MCS) approach in the CFM-GAN model to introduce more semantic details in the generated images. Moreover, we presented a multiscale discriminator structure according to the multitask learning mechanisms to effectively enhance the quality of the generated images. Eventually, the experiments using the CFM-GAN model on the KCIGD dataset and the publicly available CPLID indicated that the model used in this work outperformed existing mainstream models in improving image resolution and quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call