Abstract

U6 snRNA is one of five uridine-rich noncoding RNAs that form the major spliceosome complex. Unlike other U-snRNAs, it reveals many distinctive aspects of biogenesis such as transcription by RNA polymerase III, transcript nuclear retention and particular features of transcript ends: monomethylated 5'-guanosine triphosphate as cap structure and a 2',3'-cyclic phosphate moiety (>P) at the 3' termini. U6-snRNA plays a central role in splicing and thus its transcription, maturation, snRNP formation, and recycling are essential for cellular homeostasis. U6 snRNA enters the splicing cycle as part of the tri-U4/U6.U5snRNP complex, and after significant structural arrangements forms the catalytic site of the spliceosome together with U2 snRNA and Prp8. U6 snRNA also contributes to the splicing reaction by coordinating metal cations required for catalysis. Many human diseases are associated with altered splicing processes. Disruptions of the basal splicing machinery can be lethal or lead to severe diseases such as spinal muscular atrophy, amyotrophic lateral sclerosis, or retinitis pigmentosa. Recent studies have identified a new U6 snRNA biogenesis factor Usb1, the absence of which leads to poikiloderma with neutropenia (PN) (OMIM 604173), an autosomal recessive skin disease. Usb1 is an evolutionarily conserved 3'→5' exoribonuclease that is responsible for removing 3'-terminal uridines from U6 snRNA transcripts, which leads to the formation of a 2',3' cyclic phosphate moiety (>P). This maturation step is fundamental for U6 snRNP assembly and recycling. Usb1 represents the first example of a direct association between a spliceosomal U6 snRNA biogenesis factor and human genetic disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call