Abstract

BackgroundUnveiling fungal genome structure and function reveals the potential biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing fungus. We studied the genomic regions in T. harzianum IOC3844 containing CAZyme genes, transcription factors and transporters.ResultsWe used bioinformatics tools to mine the T. harzianum genome for potential genomics, transcriptomics, and exoproteomics data and coexpression networks. The DNA was sequenced by PacBio SMRT technology for multiomics data analysis and integration. In total, 1676 genes were annotated in the genomic regions analyzed; 222 were identified as CAZymes in T. harzianum IOC3844. When comparing transcriptome data under cellulose or glucose conditions, 114 genes were differentially expressed in cellulose, with 51 being CAZymes. CLR2, a transcription factor physically and phylogenetically conserved in Trichoderma spp., was differentially expressed under cellulose conditions. The genes induced/repressed under cellulose conditions included those important for plant biomass degradation, including CIP2 of the CE15 family and a copper-dependent LPMO of the AA9 family.ConclusionsOur results provide new insights into the relationship between genomic organization and hydrolytic enzyme expression and regulation in T. harzianum IOC3844. Our results can improve plant biomass degradation, which is fundamental for developing more efficient strains and/or enzymatic cocktails to produce hydrolytic enzymes.

Highlights

  • Unveiling fungal genome structure and function reveals the potential biotechnological use of fungi

  • Trichoderma is a very diverse genus of fungi that produces enzymes applied in different areas; some strains are applied in biocontrol (T. atroviride, T. harzianum and T. virens) [1, 2], and others are specific for the biofuel technology (T. reesei and T. harzianum) [3, 4]

  • Genomic regions of T. harzianum IOC3844 In this study, a library of large genomic regions was used as a platform to search for genes of interest and to thoroughly study the genomic structure of T. harzianum IOC3844 (ThIOC3844) (Additional file 1: Fig. S1 and Additional file 2: Supplementary Table S1)

Read more

Summary

Introduction

Unveiling fungal genome structure and function reveals the potential biotechnological use of fungi. Trichoderma harzianum is a powerful CAZyme-producing fungus. Trichoderma is a very diverse genus of fungi that produces enzymes applied in different areas; some strains are applied in biocontrol (T. atroviride, T. harzianum and T. virens) [1, 2], and others are specific for the biofuel technology (T. reesei and T. harzianum) [3, 4]. Different strains of T. harzianum have high cellulolytic activity, and the potential of these enzymes has been explored for applications in biomass degradation to the production of biofuels [4, 5]. T. harzianum capacity to biomass degradation is still poorly explored compared to that of other cellulolytic fungi. Due to the high cellulolytic activity some strains has shown considerable potential for application in plant biomass hydrolysis [4, 7, 8]. T. harzianum strains have potential for the production of an enzymatic/protein arsenal necessary for the complete hydrolysis of cellulosic compounds in fermentable sugars [5, 9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.