Abstract

Manganese oxide (MnO2) is one of the most promising intercalation cathode materials for zinc ion batteries (ZIBs). Specifically, a layered type delta manganese dioxide (δ-MnO2) allows reversible insertion/extraction of Zn2+ ions and exhibits high storage capacity of Zn2+ ions. However, a poor conductivity of δ-MnO2, as well as other crystallographic forms, limits its potential applications. This study focuses on δ-MnO2 with nanoflower structure supported on graphite flake, namely MNG, for use as an intercalation host material of rechargeable aqueous ZIBs. Pristine δ-MnO2 nanoflowers and MNG were synthesized and examined using X-ray diffraction, electron spectroscopy, and electrochemical techniques. Also, performances of the batteries with the pristine δ-MnO2 nanoflowers and MNG cathodes were studied in CR2032 coin cells. MNG exhibits a fast insertion/extraction of Zn2+ ions with diffusion scheme and pseudocapacitive behavior. The battery using MNG cathode exhibited a high initial discharge capacity of 235 mAh/g at 200 mA/g specific current density compared to 130 mAh/g which is displayed by the pristine δ-MnO2 cathode at the same specific current density. MNG demonstrated superior electrical conductivity compared to the pristine δ-MnO2. The results obtained pave the way for improving the electrical conductivity of MnO2 by using graphite flake support. The graphite flake support significantly improved performances of ZIBs and made them attractive for use in a wide variety of energy applications.

Highlights

  • Manganese dioxide (MnO2) is widely used as a cathode material in battery technologies because of its several advantageous properties such as low-cost, abundant, low toxicity, and environmental friendliness[1,2,3]

  • It was applied in different metal-ion batteries including Li-ion battery (LIB)[8], Mg-ion battery (MIB)[9] and Zn-ion battery (ZIB)[10,11]

  • Δ-MnO2 nanoflower supported on graphite flake was synthesized and used as an intercalation host material for a rechargeable ZIB

Read more

Summary

Introduction

Manganese dioxide (MnO2) is widely used as a cathode material in battery technologies because of its several advantageous properties such as low-cost, abundant, low toxicity, and environmental friendliness[1,2,3]. MNG having micropores among petals will assist in increasing the contact area between the electrolyte and cathode material as well as ensure fast ion transfer in the charge/discharge process[22]. In the higher potential region, two oxidation peaks can be seen at 1.57 and 1.54 V for δ-MnO2 and MNG, respectively, which correspond to the extraction of Zn2+ ions from the δ-MnO2 host structure.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.